Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Cell Biochem Funct ; 41(3): 284-295, 2023 Apr.
Article En | MEDLINE | ID: mdl-36929117

In the last 2 years, different pharmacological agents have been indicated as potential inhibitors of SARS-CoV-2 in vitro. Specifically, drugs termed as functional inhibitors of acid sphingomyelinase (FIASMAs) have proved to inhibit the SARS-CoV-2 replication using different types of cells. Those therapeutic agents share several chemical structure characteristics and some well-known representatives are fluoxetine, escitalopram, fluvoxamine, and others. Most of the FIASMAs are primarily used as effective therapeutic agents to treat different pathologies, therefore, they are natural drug candidates for repositioning strategy. In this review, we summarize the two main proposed mechanisms mediating acid sphingomyelinase (ASM) inhibition and how they can explain the inhibition of SARS-CoV-2 replication by FIASMAs. The first mechanism implies a disruption in the lysosomal pH fall as the endosome-lysosome moves toward the interior of the cell. In fact, changes in cholesterol levels in endosome-lysosome membranes, which are associated with ASM inhibition is thought to be mediated by lysosomal proton pump (ATP-ase) inactivation. The second mechanism involves the formation of an extracellular ceramide-rich domain, which is blocked by FIASMAs. The ceramide-rich domains are believed to facilitate the SARS-CoV-2 entrance into the host cells.


COVID-19 , SARS-CoV-2 , Sphingomyelin Phosphodiesterase , Humans , Ceramides/metabolism , Fluoxetine/pharmacology , SARS-CoV-2/drug effects , Sphingomyelin Phosphodiesterase/antagonists & inhibitors , Sphingomyelin Phosphodiesterase/metabolism
2.
J Biomol Struct Dyn ; 41(19): 9562-9575, 2023 11.
Article En | MEDLINE | ID: mdl-36447407

Acid Sphingomyelinase (ASM) is a human phosphodiesterase that catalyzes the metabolism of sphingomyelin (SM) to ceramide and phosphocholine. ASM is involved in the plasma membrane cell repair and is associated with the lysosomal inner lipid membrane by nonbonding interactions. The disruption of those interaction would result in ASM release into the lysosomal lumen and consequent degradation of its structure. Furthermore, SARS-CoV-2 infection has been linked with ASM activation and with a ceramide domain formation in the outer leaflet of the plasma membrane that is thought to be crucial for the viral particles recognition by the host cells. In this study, we have explored in silico the behavior of fluoxetine and related drugs as potential inhibitors of ASM. Theoretically, these drugs would be able to overpass lysosomal membrane and reach the interactions that sustain ASM structure, breaking them and inhibiting the ASM. The analyses of docking data indicated that fluoxetine allocated mainly in the N-terminal saposin domain via nonbonding interactions, mostly of hydrophobic nature. Similar results were obtained for venlafaxine, citalopram, atomoxetine, nisoxetine and fluoxetine's main metabolite norfluoxetine. In conclusion, it was observed that the saposin allocation may be a good indicative of the drugs inhibition mechanism, once this domain is responsible for the binding of ASM to lysosomal membrane and some of those drugs have previously been reported to inhibit the phosphodiesterase by releasing its structure in the lysosomal lumen. Our MD data also provides some insight about natural ligand C18 sphingomyelin conformations on saposin.Communicated by Ramaswamy H. Sarma.


COVID-19 , Sphingomyelin Phosphodiesterase , Humans , Sphingomyelin Phosphodiesterase/metabolism , Fluoxetine/pharmacology , SARS-CoV-2/metabolism , Sphingomyelins , Saposins , Antidepressive Agents/pharmacology , Ceramides/metabolism
3.
Curr Drug Discov Technol ; 20(2): e101022209771, 2023.
Article En | MEDLINE | ID: mdl-36221883

BACKGROUND: SARS-CoV-2 main protease (Mpro or 3CLpro) and papain-like protease (PLpro) are common viral targets for repurposed drugs to combat COVID-19 disease. Recently, several antidepressants (such as fluoxetine, venlafaxine and citalopram) belonging to the Selective Serotonin Reuptake Inhibitors (SSRIs) and the Serotonin-Norepinephrine Reuptake Inhibitors (SNRI) classes have been shown to in vitro inhibit viral replication. AIM: Investigate a possible action of fluoxetine and derivatives on SARS-CoV-2 protease sites. METHODS: Molecular docking was performed using AutoDock Vina. Both protease structures and different drug conformations were used to explore the possibility of SARS-CoV-2 inhibition on a Mpro or PLpro related pathway. Drug structures were obtained by optimization with the Avogadro software and MOPAC using the PM6 method. Results were analysed on Discovery Studio Visualizer. RESULTS: The results indicated that Mpro interacted in a thermodynamically favorable way with fluoxetine, venlafaxine, citalopram, atomoxetine, nisoxetine and norfluoxetine in the region of the active site, whether PLpro conformers did not come close to the active site. CONCLUSION: In an in silico perspective, it is likely that the SSRIs and other anti-depressants could interact with Mpro and cause the enzyme to malfunction. Unfortunately, the same drugs did not present similar results on PLpro crystal, therefore, no inhibition is expected in an in vitro trial. Anyway, in vitro tests are necessary for a better understanding of the links between SARS-CoV-2 proteases and antidepressants.


COVID-19 , Humans , SARS-CoV-2 , Molecular Docking Simulation , Papain , Fluoxetine/pharmacology , Fluoxetine/therapeutic use , Selective Serotonin Reuptake Inhibitors/pharmacology , Selective Serotonin Reuptake Inhibitors/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry , Peptide Hydrolases , Citalopram , Venlafaxine Hydrochloride/pharmacology , Venlafaxine Hydrochloride/therapeutic use , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , Protease Inhibitors/chemistry , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use
...